diff --git a/src/backend/utils/adt/network_selfuncs.c b/src/backend/utils/adt/network_selfuncs.c
index d0d806f..f854847 100644
*** a/src/backend/utils/adt/network_selfuncs.c
--- b/src/backend/utils/adt/network_selfuncs.c
***************
*** 3,9 ****
   * network_selfuncs.c
   *	  Functions for selectivity estimation of inet/cidr operators
   *
!  * Currently these are just stubs, but we hope to do better soon.
   *
   * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
   * Portions Copyright (c) 1994, Regents of the University of California
--- 3,11 ----
   * network_selfuncs.c
   *	  Functions for selectivity estimation of inet/cidr operators
   *
!  * This module provides estimators for the subnet inclusion and overlap
!  * operators.  Estimates are based on null fraction, most common values,
!  * and histogram of inet/cidr columns.
   *
   * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
   * Portions Copyright (c) 1994, Regents of the University of California
***************
*** 16,32 ****
   */
  #include "postgres.h"
  
  #include "utils/inet.h"
  
  
  Datum
  networksel(PG_FUNCTION_ARGS)
  {
! 	PG_RETURN_FLOAT8(0.001);
  }
  
  Datum
  networkjoinsel(PG_FUNCTION_ARGS)
  {
! 	PG_RETURN_FLOAT8(0.001);
  }
--- 18,949 ----
   */
  #include "postgres.h"
  
+ #include <math.h>
+ 
+ #include "access/htup_details.h"
+ #include "catalog/pg_operator.h"
+ #include "catalog/pg_statistic.h"
  #include "utils/inet.h"
+ #include "utils/lsyscache.h"
+ #include "utils/selfuncs.h"
+ 
+ 
+ /* Default selectivity for the inet overlap operator */
+ #define DEFAULT_OVERLAP_SEL 0.01
  
+ /* Default selectivity for the various inclusion operators */
+ #define DEFAULT_INCLUSION_SEL 0.005
+ 
+ /* Default selectivity for specified operator */
+ #define DEFAULT_SEL(operator) \
+ 	((operator) == OID_INET_OVERLAP_OP ? \
+ 	 DEFAULT_OVERLAP_SEL : DEFAULT_INCLUSION_SEL)
+ 
+ static Selectivity networkjoinsel_inner(Oid operator,
+ 					 VariableStatData *vardata1, VariableStatData *vardata2);
+ static Selectivity networkjoinsel_semi(Oid operator,
+ 					VariableStatData *vardata1, VariableStatData *vardata2);
+ static Selectivity mcv_population(float4 *mcv_numbers, int mcv_nvalues);
+ static Selectivity inet_hist_value_sel(Datum *values, int nvalues,
+ 					Datum constvalue, int opr_codenum);
+ static Selectivity inet_mcv_join_sel(Datum *mcv1_values,
+ 				  float4 *mcv1_numbers, int mcv1_nvalues, Datum *mcv2_values,
+ 				  float4 *mcv2_numbers, int mcv2_nvalues, Oid operator);
+ static Selectivity inet_mcv_hist_sel(Datum *mcv_values, float4 *mcv_numbers,
+ 				  int mcv_nvalues, Datum *hist_values, int hist_nvalues,
+ 				  int opr_codenum);
+ static Selectivity inet_hist_inclusion_join_sel(Datum *hist1_values,
+ 							 int hist1_nvalues,
+ 							 Datum *hist2_values, int hist2_nvalues,
+ 							 int opr_codenum);
+ static Selectivity inet_semi_join_sel(Datum lhs_value,
+ 				   bool mcv_exists, Datum *mcv_values, int mcv_nvalues,
+ 				   bool hist_exists, Datum *hist_values, int hist_nvalues,
+ 				   double hist_weight,
+ 				   FmgrInfo *proc, int opr_codenum);
+ static int	inet_opr_codenum(Oid operator);
+ static int	inet_inclusion_cmp(inet *left, inet *right, int opr_codenum);
+ static int inet_masklen_inclusion_cmp(inet *left, inet *right,
+ 						   int opr_codenum);
+ static int inet_hist_match_divider(inet *boundary, inet *query,
+ 						int opr_codenum);
  
+ /*
+  * Selectivity estimation for the subnet inclusion/overlap operators
+  */
  Datum
  networksel(PG_FUNCTION_ARGS)
  {
! 	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
! 	Oid			operator = PG_GETARG_OID(1);
! 	List	   *args = (List *) PG_GETARG_POINTER(2);
! 	int			varRelid = PG_GETARG_INT32(3);
! 	VariableStatData vardata;
! 	Node	   *other;
! 	bool		varonleft;
! 	Selectivity selec,
! 				mcv_selec,
! 				non_mcv_selec;
! 	Datum		constvalue,
! 			   *hist_values;
! 	int			hist_nvalues;
! 	Form_pg_statistic stats;
! 	double		sumcommon,
! 				nullfrac;
! 	FmgrInfo	proc;
! 
! 	/*
! 	 * If expression is not (variable op something) or (something op
! 	 * variable), then punt and return a default estimate.
! 	 */
! 	if (!get_restriction_variable(root, args, varRelid,
! 								  &vardata, &other, &varonleft))
! 		PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
! 
! 	/*
! 	 * Can't do anything useful if the something is not a constant, either.
! 	 */
! 	if (!IsA(other, Const))
! 	{
! 		ReleaseVariableStats(vardata);
! 		PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
! 	}
! 
! 	/* All of the operators handled here are strict. */
! 	if (((Const *) other)->constisnull)
! 	{
! 		ReleaseVariableStats(vardata);
! 		PG_RETURN_FLOAT8(0.0);
! 	}
! 	constvalue = ((Const *) other)->constvalue;
! 
! 	/* Otherwise, we need stats in order to produce a non-default estimate. */
! 	if (!HeapTupleIsValid(vardata.statsTuple))
! 	{
! 		ReleaseVariableStats(vardata);
! 		PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
! 	}
! 
! 	stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
! 	nullfrac = stats->stanullfrac;
! 
! 	/*
! 	 * If we have most-common-values info, add up the fractions of the MCV
! 	 * entries that satisfy MCV OP CONST.  These fractions contribute directly
! 	 * to the result selectivity.  Also add up the total fraction represented
! 	 * by MCV entries.
! 	 */
! 	fmgr_info(get_opcode(operator), &proc);
! 	mcv_selec = mcv_selectivity(&vardata, &proc, constvalue, varonleft,
! 								&sumcommon);
! 
! 	/*
! 	 * If we have a histogram, use it to estimate the proportion of the
! 	 * non-MCV population that satisfies the clause.  If we don't, apply the
! 	 * default selectivity to that population.
! 	 */
! 	if (get_attstatsslot(vardata.statsTuple,
! 						 vardata.atttype, vardata.atttypmod,
! 						 STATISTIC_KIND_HISTOGRAM, InvalidOid,
! 						 NULL,
! 						 &hist_values, &hist_nvalues,
! 						 NULL, NULL))
! 	{
! 		int			opr_codenum = inet_opr_codenum(operator);
! 
! 		/* Commute if needed, so we can consider histogram to be on the left */
! 		if (!varonleft)
! 			opr_codenum = -opr_codenum;
! 		non_mcv_selec = inet_hist_value_sel(hist_values, hist_nvalues,
! 											constvalue, opr_codenum);
! 
! 		free_attstatsslot(vardata.atttype, hist_values, hist_nvalues, NULL, 0);
! 	}
! 	else
! 		non_mcv_selec = DEFAULT_SEL(operator);
! 
! 	/* Combine selectivities for MCV and non-MCV populations */
! 	selec = mcv_selec + (1.0 - nullfrac - sumcommon) * non_mcv_selec;
! 
! 	/* Result should be in range, but make sure... */
! 	CLAMP_PROBABILITY(selec);
! 
! 	ReleaseVariableStats(vardata);
! 
! 	PG_RETURN_FLOAT8(selec);
  }
  
+ /*
+  * Join selectivity estimation for the subnet inclusion/overlap operators
+  *
+  * This function has the same structure as eqjoinsel() in selfuncs.c.
+  */
  Datum
  networkjoinsel(PG_FUNCTION_ARGS)
  {
! 	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
! 	Oid			operator = PG_GETARG_OID(1);
! 	List	   *args = (List *) PG_GETARG_POINTER(2);
! #ifdef NOT_USED
! 	JoinType	jointype = (JoinType) PG_GETARG_INT16(3);
! #endif
! 	SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
! 	double		selec;
! 	VariableStatData vardata1;
! 	VariableStatData vardata2;
! 	bool		join_is_reversed;
! 
! 	get_join_variables(root, args, sjinfo,
! 					   &vardata1, &vardata2, &join_is_reversed);
! 
! 	switch (sjinfo->jointype)
! 	{
! 		case JOIN_INNER:
! 		case JOIN_LEFT:
! 		case JOIN_FULL:
! 
! 			/*
! 			 * Selectivity for left/full join is not exactly the same as inner
! 			 * join, but we neglect the difference, as eqjoinsel does.
! 			 */
! 			selec = networkjoinsel_inner(operator, &vardata1, &vardata2);
! 			break;
! 		case JOIN_SEMI:
! 		case JOIN_ANTI:
! 			/* Here, it's important that we pass the outer var on the left. */
! 			if (!join_is_reversed)
! 				selec = networkjoinsel_semi(operator, &vardata1, &vardata2);
! 			else
! 				selec = networkjoinsel_semi(get_commutator(operator),
! 											&vardata2, &vardata1);
! 			break;
! 		default:
! 			/* other values not expected here */
! 			elog(ERROR, "unrecognized join type: %d",
! 				 (int) sjinfo->jointype);
! 			selec = 0;			/* keep compiler quiet */
! 			break;
! 	}
! 
! 	ReleaseVariableStats(vardata1);
! 	ReleaseVariableStats(vardata2);
! 
! 	CLAMP_PROBABILITY(selec);
! 
! 	PG_RETURN_FLOAT8((float8) selec);
! }
! 
! /*
!  * Inner join selectivity estimation for subnet inclusion/overlap operators
!  *
!  * Calculates MCV vs MCV, MCV vs histogram and histogram vs histogram
!  * selectivity for join using the subnet inclusion operators.  Unlike the
!  * join selectivity function for the equality operator, eqjoinsel_inner(),
!  * one to one matching of the values is not enough.  Network inclusion
!  * operators are likely to match many to many, so we must check all pairs.
!  * (Note: it might be possible to exploit understanding of the histogram's
!  * btree ordering to reduce the work needed, but we don't currently try.)
!  * Also, MCV vs histogram selectivity is not neglected as in eqjoinsel_inner().
!  */
! static Selectivity
! networkjoinsel_inner(Oid operator,
! 					 VariableStatData *vardata1, VariableStatData *vardata2)
! {
! 	Form_pg_statistic stats;
! 	double		nullfrac1 = 0.0,
! 				nullfrac2 = 0.0;
! 	Selectivity selec = 0.0,
! 				sumcommon1 = 0.0,
! 				sumcommon2 = 0.0;
! 	bool		mcv1_exists = false,
! 				mcv2_exists = false,
! 				hist1_exists = false,
! 				hist2_exists = false;
! 	int			opr_codenum;
! 	int			mcv1_nvalues,
! 				mcv2_nvalues,
! 				mcv1_nnumbers,
! 				mcv2_nnumbers,
! 				hist1_nvalues,
! 				hist2_nvalues;
! 	Datum	   *mcv1_values,
! 			   *mcv2_values,
! 			   *hist1_values,
! 			   *hist2_values;
! 	float4	   *mcv1_numbers,
! 			   *mcv2_numbers;
! 
! 	if (HeapTupleIsValid(vardata1->statsTuple))
! 	{
! 		stats = (Form_pg_statistic) GETSTRUCT(vardata1->statsTuple);
! 		nullfrac1 = stats->stanullfrac;
! 
! 		mcv1_exists = get_attstatsslot(vardata1->statsTuple,
! 									   vardata1->atttype, vardata1->atttypmod,
! 									   STATISTIC_KIND_MCV, InvalidOid,
! 									   NULL,
! 									   &mcv1_values, &mcv1_nvalues,
! 									   &mcv1_numbers, &mcv1_nnumbers);
! 		hist1_exists = get_attstatsslot(vardata1->statsTuple,
! 									  vardata1->atttype, vardata1->atttypmod,
! 										STATISTIC_KIND_HISTOGRAM, InvalidOid,
! 										NULL,
! 										&hist1_values, &hist1_nvalues,
! 										NULL, NULL);
! 		if (mcv1_exists)
! 			sumcommon1 = mcv_population(mcv1_numbers, mcv1_nnumbers);
! 	}
! 
! 	if (HeapTupleIsValid(vardata2->statsTuple))
! 	{
! 		stats = (Form_pg_statistic) GETSTRUCT(vardata2->statsTuple);
! 		nullfrac2 = stats->stanullfrac;
! 
! 		mcv2_exists = get_attstatsslot(vardata2->statsTuple,
! 									   vardata2->atttype, vardata2->atttypmod,
! 									   STATISTIC_KIND_MCV, InvalidOid,
! 									   NULL,
! 									   &mcv2_values, &mcv2_nvalues,
! 									   &mcv2_numbers, &mcv2_nnumbers);
! 		hist2_exists = get_attstatsslot(vardata2->statsTuple,
! 									  vardata2->atttype, vardata2->atttypmod,
! 										STATISTIC_KIND_HISTOGRAM, InvalidOid,
! 										NULL,
! 										&hist2_values, &hist2_nvalues,
! 										NULL, NULL);
! 		if (mcv2_exists)
! 			sumcommon2 = mcv_population(mcv2_numbers, mcv2_nnumbers);
! 	}
! 
! 	opr_codenum = inet_opr_codenum(operator);
! 
! 	/*
! 	 * Calculate selectivity for MCV vs MCV matches.
! 	 */
! 	if (mcv1_exists && mcv2_exists)
! 		selec += inet_mcv_join_sel(mcv1_values, mcv1_numbers, mcv1_nvalues,
! 								   mcv2_values, mcv2_numbers, mcv2_nvalues,
! 								   operator);
! 
! 	/*
! 	 * Add in selectivities for MCV vs histogram matches, scaling according to
! 	 * the fractions of the populations represented by the histograms. Note
! 	 * that the second case needs to commute the operator.
! 	 */
! 	if (mcv1_exists && hist2_exists)
! 		selec += (1.0 - nullfrac2 - sumcommon2) *
! 			inet_mcv_hist_sel(mcv1_values, mcv1_numbers, mcv1_nvalues,
! 							  hist2_values, hist2_nvalues,
! 							  opr_codenum);
! 	if (mcv2_exists && hist1_exists)
! 		selec += (1.0 - nullfrac1 - sumcommon1) *
! 			inet_mcv_hist_sel(mcv2_values, mcv2_numbers, mcv2_nvalues,
! 							  hist1_values, hist1_nvalues,
! 							  -opr_codenum);
! 
! 	/*
! 	 * Add in selectivity for histogram vs histogram matches, again scaling
! 	 * appropriately.
! 	 */
! 	if (hist1_exists && hist2_exists)
! 		selec += (1.0 - nullfrac1 - sumcommon1) *
! 			(1.0 - nullfrac2 - sumcommon2) *
! 			inet_hist_inclusion_join_sel(hist1_values, hist1_nvalues,
! 										 hist2_values, hist2_nvalues,
! 										 opr_codenum);
! 
! 	/*
! 	 * If useful statistics are not available then use the default estimate.
! 	 * We can apply null fractions if known, though.
! 	 */
! 	if ((!mcv1_exists && !hist1_exists) || (!mcv2_exists && !hist2_exists))
! 		selec = (1.0 - nullfrac1) * (1.0 - nullfrac2) * DEFAULT_SEL(operator);
! 
! 	/* Release stats. */
! 	if (mcv1_exists)
! 		free_attstatsslot(vardata1->atttype, mcv1_values, mcv1_nvalues,
! 						  mcv1_numbers, mcv1_nnumbers);
! 	if (mcv2_exists)
! 		free_attstatsslot(vardata2->atttype, mcv2_values, mcv2_nvalues,
! 						  mcv2_numbers, mcv2_nnumbers);
! 	if (hist1_exists)
! 		free_attstatsslot(vardata1->atttype, hist1_values, hist1_nvalues,
! 						  NULL, 0);
! 	if (hist2_exists)
! 		free_attstatsslot(vardata2->atttype, hist2_values, hist2_nvalues,
! 						  NULL, 0);
! 
! 	return selec;
! }
! 
! /*
!  * Semi join selectivity estimation for subnet inclusion/overlap operators
!  *
!  * Calculates MCV vs MCV, MCV vs histogram, histogram vs MCV, and histogram vs
!  * histogram selectivity for semi/anti join cases.
!  */
! static Selectivity
! networkjoinsel_semi(Oid operator,
! 					VariableStatData *vardata1, VariableStatData *vardata2)
! {
! 	Form_pg_statistic stats;
! 	Selectivity selec = 0.0,
! 				sumcommon1 = 0.0,
! 				sumcommon2 = 0.0;
! 	double		nullfrac1 = 0.0,
! 				nullfrac2 = 0.0,
! 				hist2_weight = 0.0;
! 	bool		mcv1_exists = false,
! 				mcv2_exists = false,
! 				hist1_exists = false,
! 				hist2_exists = false;
! 	int			opr_codenum;
! 	FmgrInfo	proc;
! 	int			i,
! 				mcv1_nvalues,
! 				mcv2_nvalues,
! 				mcv1_nnumbers,
! 				mcv2_nnumbers,
! 				hist1_nvalues,
! 				hist2_nvalues;
! 	Datum	   *mcv1_values,
! 			   *mcv2_values,
! 			   *hist1_values,
! 			   *hist2_values;
! 	float4	   *mcv1_numbers,
! 			   *mcv2_numbers;
! 
! 	if (HeapTupleIsValid(vardata1->statsTuple))
! 	{
! 		stats = (Form_pg_statistic) GETSTRUCT(vardata1->statsTuple);
! 		nullfrac1 = stats->stanullfrac;
! 
! 		mcv1_exists = get_attstatsslot(vardata1->statsTuple,
! 									   vardata1->atttype, vardata1->atttypmod,
! 									   STATISTIC_KIND_MCV, InvalidOid,
! 									   NULL,
! 									   &mcv1_values, &mcv1_nvalues,
! 									   &mcv1_numbers, &mcv1_nnumbers);
! 		hist1_exists = get_attstatsslot(vardata1->statsTuple,
! 									  vardata1->atttype, vardata1->atttypmod,
! 										STATISTIC_KIND_HISTOGRAM, InvalidOid,
! 										NULL,
! 										&hist1_values, &hist1_nvalues,
! 										NULL, NULL);
! 		if (mcv1_exists)
! 			sumcommon1 = mcv_population(mcv1_numbers, mcv1_nnumbers);
! 	}
! 
! 	if (HeapTupleIsValid(vardata2->statsTuple))
! 	{
! 		stats = (Form_pg_statistic) GETSTRUCT(vardata2->statsTuple);
! 		nullfrac2 = stats->stanullfrac;
! 
! 		mcv2_exists = get_attstatsslot(vardata2->statsTuple,
! 									   vardata2->atttype, vardata2->atttypmod,
! 									   STATISTIC_KIND_MCV, InvalidOid,
! 									   NULL,
! 									   &mcv2_values, &mcv2_nvalues,
! 									   &mcv2_numbers, &mcv2_nnumbers);
! 		hist2_exists = get_attstatsslot(vardata2->statsTuple,
! 									  vardata2->atttype, vardata2->atttypmod,
! 										STATISTIC_KIND_HISTOGRAM, InvalidOid,
! 										NULL,
! 										&hist2_values, &hist2_nvalues,
! 										NULL, NULL);
! 		if (mcv2_exists)
! 			sumcommon2 = mcv_population(mcv2_numbers, mcv2_nnumbers);
! 	}
! 
! 	opr_codenum = inet_opr_codenum(operator);
! 	fmgr_info(get_opcode(operator), &proc);
! 
! 	/* Estimate number of input rows represented by RHS histogram. */
! 	if (hist2_exists && vardata2->rel)
! 		hist2_weight = (1.0 - nullfrac2 - sumcommon2) * vardata2->rel->rows;
! 
! 	/*
! 	 * Consider each element of the LHS MCV list, matching it to whatever RHS
! 	 * stats we have.  Scale according to the known frequency of the MCV.
! 	 */
! 	if (mcv1_exists && (mcv2_exists || hist2_exists))
! 	{
! 		for (i = 0; i < mcv1_nvalues; i++)
! 		{
! 			selec += mcv1_numbers[i] *
! 				inet_semi_join_sel(mcv1_values[i],
! 								   mcv2_exists, mcv2_values, mcv2_nvalues,
! 								   hist2_exists, hist2_values, hist2_nvalues,
! 								   hist2_weight,
! 								   &proc, opr_codenum);
! 		}
! 	}
! 
! 	/*
! 	 * Consider each element of the LHS histogram, except for the first and
! 	 * last elements, which we exclude on the grounds that they're outliers
! 	 * and thus not very representative.  Scale on the assumption that each
! 	 * such histogram element represents an equal share of the LHS histogram
! 	 * population (which is a bit bogus, because the members of its bucket may
! 	 * not all act the same with respect to the join clause, but it's hard to
! 	 * do better).
! 	 */
! 	if (hist1_exists && hist1_nvalues > 2 && (mcv2_exists || hist2_exists))
! 	{
! 		double		hist_selec_sum = 0.0;
! 
! 		for (i = 1; i < hist1_nvalues - 1; i++)
! 		{
! 			hist_selec_sum +=
! 				inet_semi_join_sel(hist1_values[i],
! 								   mcv2_exists, mcv2_values, mcv2_nvalues,
! 								   hist2_exists, hist2_values, hist2_nvalues,
! 								   hist2_weight,
! 								   &proc, opr_codenum);
! 		}
! 
! 		selec += (1.0 - nullfrac1 - sumcommon1) *
! 			hist_selec_sum / (hist1_nvalues - 2);
! 	}
! 
! 	/*
! 	 * If useful statistics are not available then use the default estimate.
! 	 * We can apply null fractions if known, though.
! 	 */
! 	if ((!mcv1_exists && !hist1_exists) || (!mcv2_exists && !hist2_exists))
! 		selec = (1.0 - nullfrac1) * (1.0 - nullfrac2) * DEFAULT_SEL(operator);
! 
! 	/* Release stats. */
! 	if (mcv1_exists)
! 		free_attstatsslot(vardata1->atttype, mcv1_values, mcv1_nvalues,
! 						  mcv1_numbers, mcv1_nnumbers);
! 	if (mcv2_exists)
! 		free_attstatsslot(vardata2->atttype, mcv2_values, mcv2_nvalues,
! 						  mcv2_numbers, mcv2_nnumbers);
! 	if (hist1_exists)
! 		free_attstatsslot(vardata1->atttype, hist1_values, hist1_nvalues,
! 						  NULL, 0);
! 	if (hist2_exists)
! 		free_attstatsslot(vardata2->atttype, hist2_values, hist2_nvalues,
! 						  NULL, 0);
! 
! 	return selec;
! }
! 
! /*
!  * Compute the fraction of a relation's population that is represented
!  * by the MCV list.
!  */
! static Selectivity
! mcv_population(float4 *mcv_numbers, int mcv_nvalues)
! {
! 	Selectivity sumcommon = 0.0;
! 	int			i;
! 
! 	for (i = 0; i < mcv_nvalues; i++)
! 	{
! 		sumcommon += mcv_numbers[i];
! 	}
! 
! 	return sumcommon;
! }
! 
! /*
!  * Inet histogram vs single value selectivity estimation
!  *
!  * Estimate the fraction of the histogram population that satisfies
!  * "value OPR CONST".  (The result needs to be scaled to reflect the
!  * proportion of the total population represented by the histogram.)
!  *
!  * The histogram is originally for the inet btree comparison operators.
!  * Only the common bits of the network part and the length of the network part
!  * (masklen) are interesting for the subnet inclusion operators.  Fortunately,
!  * btree comparison treats the network part as the major sort key.  Even so,
!  * the length of the network part would not really be significant in the
!  * histogram.  This would lead to big mistakes for data sets with uneven
!  * masklen distribution.  To reduce this problem, comparisons with the left
!  * and the right sides of the buckets are used together.
!  *
!  * Histogram bucket matches are calculated in two forms.  If the constant
!  * matches both bucket endpoints the bucket is considered as fully matched.
!  * The second form is to match the bucket partially; we recognize this when
!  * the constant matches just one endpoint, or the two endpoints fall on
!  * opposite sides of the constant.  (Note that when the constant matches an
!  * interior histogram element, it gets credit for partial matches to the
!  * buckets on both sides, while a match to a histogram endpoint gets credit
!  * for only one partial match.  This is desirable.)
!  *
!  * For a partial match, we try to calculate dividers for both of the
!  * boundaries.  If the address family of a boundary value does not match the
!  * constant or comparison of the length of the network parts is not correct
!  * for the operator, the divider for that boundary will not be taken into
!  * account.  If both of the dividers are valid, the greater one will be used
!  * to minimize the mistake in buckets that have disparate masklens.
!  *
!  * The divider in the partial bucket match is imagined as the distance
!  * between the decisive bits and the common bits of the addresses.  It will
!  * be used as a power of two as it is the natural scale for the IP network
!  * inclusion.  This partial bucket match divider calculation is an empirical
!  * formula and subject to change with more experiment.
!  *
!  * For partial match in buckets that have different address families on the
!  * left and right sides, only the boundary with the same address family is
!  * taken into consideration.  This can cause more mistakes for these buckets
!  * if the masklens of their boundaries are also disparate.  But this can only
!  * happen in one bucket, since only two address families exist.  It seems a
!  * better option than not considering these buckets at all.
!  */
! static Selectivity
! inet_hist_value_sel(Datum *values, int nvalues, Datum constvalue,
! 					int opr_codenum)
! {
! 	Selectivity match = 0.0;
! 	inet	   *query,
! 			   *left,
! 			   *right;
! 	int			i;
! 	int			left_order,
! 				right_order,
! 				left_divider,
! 				right_divider;
! 
! 	/* guard against zero-divide below */
! 	if (nvalues <= 1)
! 		return 0.0;
! 
! 	query = DatumGetInetPP(constvalue);
! 
! 	/* "left" is the left boundary value of the current bucket ... */
! 	left = DatumGetInetPP(values[0]);
! 	left_order = inet_inclusion_cmp(left, query, opr_codenum);
! 
! 	for (i = 1; i < nvalues; i++)
! 	{
! 		/* ... and "right" is the right boundary value */
! 		right = DatumGetInetPP(values[i]);
! 		right_order = inet_inclusion_cmp(right, query, opr_codenum);
! 
! 		if (left_order == 0 && right_order == 0)
! 		{
! 			/* The whole bucket matches, since both endpoints do. */
! 			match += 1.0;
! 		}
! 		else if ((left_order <= 0 && right_order >= 0) ||
! 				 (left_order >= 0 && right_order <= 0))
! 		{
! 			/* Partial bucket match. */
! 			left_divider = inet_hist_match_divider(left, query, opr_codenum);
! 			right_divider = inet_hist_match_divider(right, query, opr_codenum);
! 
! 			if (left_divider >= 0 || right_divider >= 0)
! 				match += 1.0 / pow(2.0, Max(left_divider, right_divider));
! 		}
! 
! 		/* Shift the variables. */
! 		left = right;
! 		left_order = right_order;
! 	}
! 
! 	/* There are nvalues - 1 buckets. */
! 	return match / (nvalues - 1);
! }
! 
! /*
!  * Inet MCV vs MCV join selectivity estimation
!  *
!  * We simply add up the fractions of the populations that satisfy the clause.
!  * The result is exact and does not need to be scaled further.
!  */
! static Selectivity
! inet_mcv_join_sel(Datum *mcv1_values, float4 *mcv1_numbers, int mcv1_nvalues,
! 				  Datum *mcv2_values, float4 *mcv2_numbers, int mcv2_nvalues,
! 				  Oid operator)
! {
! 	Selectivity selec = 0.0;
! 	FmgrInfo	proc;
! 	int			i,
! 				j;
! 
! 	fmgr_info(get_opcode(operator), &proc);
! 
! 	for (i = 0; i < mcv1_nvalues; i++)
! 	{
! 		for (j = 0; j < mcv2_nvalues; j++)
! 			if (DatumGetBool(FunctionCall2(&proc,
! 										   mcv1_values[i],
! 										   mcv2_values[j])))
! 				selec += mcv1_numbers[i] * mcv2_numbers[j];
! 	}
! 	return selec;
! }
! 
! /*
!  * Inet MCV vs histogram join selectivity estimation
!  *
!  * For each MCV on the lefthand side, estimate the fraction of the righthand's
!  * histogram population that satisfies the join clause, and add those up,
!  * scaling by the MCV's frequency.  The result still needs to be scaled
!  * according to the fraction of the righthand's population represented by
!  * the histogram.
!  */
! static Selectivity
! inet_mcv_hist_sel(Datum *mcv_values, float4 *mcv_numbers, int mcv_nvalues,
! 				  Datum *hist_values, int hist_nvalues,
! 				  int opr_codenum)
! {
! 	Selectivity selec = 0.0;
! 	int			i;
! 
! 	/*
! 	 * We'll call inet_hist_value_selec with the histogram on the left, so we
! 	 * must commute the operator.
! 	 */
! 	opr_codenum = -opr_codenum;
! 
! 	for (i = 0; i < mcv_nvalues; i++)
! 	{
! 		selec += mcv_numbers[i] *
! 			inet_hist_value_sel(hist_values, hist_nvalues, mcv_values[i],
! 								opr_codenum);
! 	}
! 	return selec;
! }
! 
! /*
!  * Inet histogram vs histogram join selectivity estimation
!  *
!  * Here, we take all values listed in the second histogram (except for the
!  * first and last elements, which are excluded on the grounds of possibly
!  * not being very representative) and treat them as a uniform sample of
!  * the non-MCV population for that relation.  For each one, we apply
!  * inet_hist_value_selec to see what fraction of the first histogram
!  * it matches.
!  *
!  * We could alternatively do this the other way around using the operator's
!  * commutator.  XXX would it be worthwhile to do it both ways and take the
!  * average?  That would at least avoid non-commutative estimation results.
!  */
! static Selectivity
! inet_hist_inclusion_join_sel(Datum *hist1_values, int hist1_nvalues,
! 							 Datum *hist2_values, int hist2_nvalues,
! 							 int opr_codenum)
! {
! 	float		match = 0.0;
! 	int			i;
! 
! 	if (hist2_nvalues <= 2)
! 		return 0.0;				/* no interior histogram elements */
! 
! 	for (i = 1; i < hist2_nvalues - 1; i++)
! 		match += inet_hist_value_sel(hist1_values, hist1_nvalues,
! 									 hist2_values[i], opr_codenum);
! 
! 	return match / (hist2_nvalues - 2);
! }
! 
! /*
!  * Inet semi join selectivity estimation for one value
!  *
!  * The function calculates the probability that there is at least one row
!  * in the RHS table that satisfies the "lhs_value op column" condition.
!  * It is used in semi join estimation to check a sample from the left hand
!  * side table.
!  *
!  * The MCV and histogram from the right hand side table should be provided as
!  * arguments with the lhs_value from the left hand side table for the join.
!  * hist_weight is the total number of rows represented by the histogram.
!  * For example, if the table has 1000 rows, and 10% of the rows are in the MCV
!  * list, and another 10% are NULLs, hist_weight would be 800.
!  *
!  * First, the lhs_value will be matched to the most common values.  If it
!  * matches any of them, 1.0 will be returned, because then there is surely
!  * a match.
!  *
!  * Otherwise, the histogram will be used to estimate the number of rows in
!  * the second table that match the condition.  If the estimate is greater
!  * than 1.0, 1.0 will be returned, because it means there is a greater chance
!  * that the lhs_value will match more than one row in the table.  If it is
!  * between 0.0 and 1.0, it will be returned as the probability.
!  */
! static Selectivity
! inet_semi_join_sel(Datum lhs_value,
! 				   bool mcv_exists, Datum *mcv_values, int mcv_nvalues,
! 				   bool hist_exists, Datum *hist_values, int hist_nvalues,
! 				   double hist_weight,
! 				   FmgrInfo *proc, int opr_codenum)
! {
! 	if (mcv_exists)
! 	{
! 		int			i;
! 
! 		for (i = 0; i < mcv_nvalues; i++)
! 		{
! 			if (DatumGetBool(FunctionCall2(proc,
! 										   lhs_value,
! 										   mcv_values[i])))
! 				return 1.0;
! 		}
! 	}
! 
! 	if (hist_exists && hist_weight > 0)
! 	{
! 		Selectivity hist_selec;
! 
! 		/* Commute operator, since we're passing lhs_value on the right */
! 		hist_selec = inet_hist_value_sel(hist_values, hist_nvalues,
! 										 lhs_value, -opr_codenum);
! 
! 		if (hist_selec > 0)
! 			return Min(1.0, hist_weight * hist_selec);
! 	}
! 
! 	return 0.0;
! }
! 
! /*
!  * Assign useful code numbers for the subnet inclusion/overlap operators
!  *
!  * Only inet_masklen_inclusion_cmp() and inet_hist_match_divider() depend
!  * on the exact codes assigned here; but many other places in this file
!  * know that they can negate a code to obtain the code for the commutator
!  * operator.
!  */
! static int
! inet_opr_codenum(Oid operator)
! {
! 	switch (operator)
! 	{
! 		case OID_INET_SUP_OP:
! 			return -2;
! 		case OID_INET_SUPEQ_OP:
! 			return -1;
! 		case OID_INET_OVERLAP_OP:
! 			return 0;
! 		case OID_INET_SUBEQ_OP:
! 			return 1;
! 		case OID_INET_SUB_OP:
! 			return 2;
! 		default:
! 			elog(ERROR, "unrecognized operator %u for inet selectivity",
! 				 operator);
! 	}
! 	return 0;					/* unreached, but keep compiler quiet */
! }
! 
! /*
!  * Comparison function for the subnet inclusion/overlap operators
!  *
!  * If the comparison is okay for the specified inclusion operator, the return
!  * value will be 0.  Otherwise the return value will be less than or greater
!  * than 0 as appropriate for the operator.
!  *
!  * Comparison is compatible with the basic comparison function for the inet
!  * type.  See network_cmp_internal() in network.c for the original.  Basic
!  * comparison operators are implemented with the network_cmp_internal
!  * function.  It is possible to implement the subnet inclusion operators with
!  * this function.
!  *
!  * Comparison is first on the common bits of the network part, then on the
!  * length of the network part (masklen) as in the network_cmp_internal()
!  * function.  Only the first part is in this function.  The second part is
!  * separated to another function for reusability.  The difference between the
!  * second part and the original network_cmp_internal() is that the inclusion
!  * operator is considered while comparing the lengths of the network parts.
!  * See the inet_masklen_inclusion_cmp() function below.
!  */
! static int
! inet_inclusion_cmp(inet *left, inet *right, int opr_codenum)
! {
! 	if (ip_family(left) == ip_family(right))
! 	{
! 		int			order;
! 
! 		order = bitncmp(ip_addr(left), ip_addr(right),
! 						Min(ip_bits(left), ip_bits(right)));
! 
! 		if (order != 0)
! 			return order;
! 
! 		return inet_masklen_inclusion_cmp(left, right, opr_codenum);
! 	}
! 
! 	return ip_family(left) - ip_family(right);
! }
! 
! /*
!  * Masklen comparison function for the subnet inclusion/overlap operators
!  *
!  * Compares the lengths of the network parts of the inputs.  If the comparison
!  * is okay for the specified inclusion operator, the return value will be 0.
!  * Otherwise the return value will be less than or greater than 0 as
!  * appropriate for the operator.
!  */
! static int
! inet_masklen_inclusion_cmp(inet *left, inet *right, int opr_codenum)
! {
! 	int			order;
! 
! 	order = (int) ip_bits(left) - (int) ip_bits(right);
! 
! 	/*
! 	 * Return 0 if the operator would accept this combination of masklens.
! 	 * Note that opr_codenum zero (overlaps) will accept all cases.
! 	 */
! 	if ((order > 0 && opr_codenum >= 0) ||
! 		(order == 0 && opr_codenum >= -1 && opr_codenum <= 1) ||
! 		(order < 0 && opr_codenum <= 0))
! 		return 0;
! 
! 	/*
! 	 * Otherwise, return a negative value for sup/supeq (notionally, the RHS
! 	 * needs to have a larger masklen than it has, which would make it sort
! 	 * later), or a positive value for sub/subeq (vice versa).
! 	 */
! 	return opr_codenum;
! }
! 
! /*
!  * Inet histogram partial match divider calculation
!  *
!  * First the families and the lengths of the network parts are compared using
!  * the subnet inclusion operator.  If those are acceptable for the operator,
!  * the divider will be calculated using the masklens and the common bits of
!  * the addresses.  -1 will be returned if it cannot be calculated.
!  *
!  * See commentary for inet_hist_value_sel() for some rationale for this.
!  */
! static int
! inet_hist_match_divider(inet *boundary, inet *query, int opr_codenum)
! {
! 	if (ip_family(boundary) == ip_family(query) &&
! 		inet_masklen_inclusion_cmp(boundary, query, opr_codenum) == 0)
! 	{
! 		int			min_bits,
! 					decisive_bits;
! 
! 		min_bits = Min(ip_bits(boundary), ip_bits(query));
! 
! 		/*
! 		 * Set decisive_bits to the masklen of the one that should contain the
! 		 * other according to the operator.
! 		 */
! 		if (opr_codenum < 0)
! 			decisive_bits = ip_bits(boundary);
! 		else if (opr_codenum > 0)
! 			decisive_bits = ip_bits(query);
! 		else
! 			decisive_bits = min_bits;
! 
! 		/*
! 		 * Now return the number of non-common decisive bits.  (This will be
! 		 * zero if the boundary and query in fact match, else positive.)
! 		 */
! 		if (min_bits > 0)
! 			return decisive_bits - bitncommon(ip_addr(boundary),
! 											  ip_addr(query),
! 											  min_bits);
! 		return decisive_bits;
! 	}
! 
! 	return -1;
  }
