Statistics and selectivity estimation for ranges
Hackers,
attached patch is for collecting statistics and selectivity estimation for
ranges.
In order to make our estimations accurate for every distribution of
ranges, we would collect 2d-distribution of lower and upper bounds of range
into some kind of 2d-histogram. However, this patch use some simplification
and assume distribution of lower bound and distribution of length to be
independent. We can get distribution of lower bound from standard scalar
statistics and thi patch additionally collect statistics for range length.
This patch includes selectivity estimations for "&&", "@>" and "<@"
operators on ranges. Linear interpolation is used in order to get more
accurate results.
Some examples with test dataset where left bound of range is distributed by
gaussian distribution and length of range is distributed by exponential
distribution.
test=# CREATE TABLE range_test as (SELECT int4range(lb, lb + len) AS r FROM
(SELECT (sqrt(-2*ln(random())) * sin(2*pi()*random()) * 1000000)::int as
lb, (-10000*ln(1.0 - random()) + 1)::int as len FROM
generate_series(1,1000000)) x);
SELECT 1000000
test=# ANALYZE range_test;
ANALYZE
test=# EXPLAIN ANALYZE SELECT * FROM range_test WHERE r &&
int4range(700000,710000);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------
Seq Scan on range_test (cost=0.00..17906.00 rows=7535 width=14) (actual
time=0.119..403.494 rows=6138 loops=1)
Filter: (r && '[700000,710000)'::int4range)
Rows Removed by Filter: 993862
Total runtime: 403.945 ms
(4 rows)
test=# EXPLAIN ANALYZE SELECT * FROM range_test WHERE r &&
int4range(200000,300000);
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------
Seq Scan on range_test (cost=0.00..17906.00 rows=*42427* width=14)
(actual time=0.100..401.079 rows=*42725* loops=1)
Filter: (r && '[200000,300000)'::int4range)
Rows Removed by Filter: 957275
Total runtime: 403.055 ms
(4 rows)
test=# EXPLAIN ANALYZE SELECT * FROM range_test WHERE r <@
int4range(100000,150000);
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------
Seq Scan on range_test (cost=0.00..17906.00 rows=*15341* width=14)
(actual time=0.129..382.114 rows=*16014* loops=1)
Filter: (r <@ '[100000,150000)'::int4range)
Rows Removed by Filter: 983986
Total runtime: 382.985 ms
(4 rows)
test=# EXPLAIN ANALYZE SELECT * FROM range_test WHERE r <@
int4range(600000,603000);
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Seq Scan on range_test (cost=0.00..17906.00 rows=*122* width=14) (actual
time=1.527..383.511 rows=*127* loops=1)
Filter: (r <@ '[600000,603000)'::int4range)
Rows Removed by Filter: 999873
Total runtime: 383.586 ms
(4 rows)
test=# EXPLAIN ANALYZE SELECT * FROM range_test WHERE r @>
int4range(100000,100400);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------
Seq Scan on range_test (cost=0.00..17906.00 rows=*5166* width=14) (actual
time=0.238..377.712 rows=*3909* loops=1)
Filter: (r @> '[100000,100400)'::int4range)
Rows Removed by Filter: 996091
Total runtime: 378.018 ms
(4 rows)
test=# EXPLAIN ANALYZE SELECT * FROM range_test WHERE r @>
int4range(500000,530000);
QUERY PLAN
----------------------------------------------------------------------------------------------------------------
Seq Scan on range_test (cost=0.00..17906.00 rows=*342* width=14) (actual
time=11.796..382.986 rows=*171* loops=1)
Filter: (r @> '[500000,530000)'::int4range)
Rows Removed by Filter: 999829
Total runtime: 383.066 ms
(4 rows)
------
With best regards,
Alexander Korotkov.
Attachments:
On 04.08.2012 12:31, Alexander Korotkov wrote:
Hackers,
attached patch is for collecting statistics and selectivity estimation for
ranges.In order to make our estimations accurate for every distribution of
ranges, we would collect 2d-distribution of lower and upper bounds of range
into some kind of 2d-histogram. However, this patch use some simplification
and assume distribution of lower bound and distribution of length to be
independent.
Sounds reasonable. Another possibility would be to calculate the average
length for each lower-bound bin. So you would e.g know the average
length of values with lower bound between 1-10, and the average length
of values with lower bound between 10-20, and so forth. Within a bin,
you would have to assume that the distribution of the lengths is fixed.
PS. get_position() should guard against division by zero, when subdiff
returns zero.
--
Heikki Linnakangas
EnterpriseDB http://www.enterprisedb.com
Having statistics on ranges was really missing! The planner was doing
some really, really bad choices on bigger tables regarding seq/random
scans, nested loop/other joins etc.
Is there any chance this makes it into 9.2 final? It would really
round-off the introduction of range types and maybe avoid problems
like "the new range types are slow" (just due to the bad row
estimates).
Thanks for implementing this feature,
-Matthias
Import Notes
Resolved by subject fallback
Having statistics on ranges was really missing! The planner was doing
some really, really bad choices on bigger tables regarding seq/random
scans, nested loop/other joins etc.
Is there any chance this makes it into 9.2 final? It would really
round-off the introduction of range types and maybe avoid problems
like "the new range types are slow" (just due to the bad row
estimates).
Thanks for implementing this feature,
-Matthias
Is there any chance this makes it into 9.2 final? It would really
round-off the introduction of range types and maybe avoid problems
like "the new range types are slow" (just due to the bad row
estimates).
Nope, that's strictly a 9.3 feature. 9.2 is in beta2.
--
Josh Berkus
PostgreSQL Experts Inc.
http://pgexperts.com
On Mon, Aug 6, 2012 at 6:09 PM, Heikki Linnakangas <
heikki.linnakangas@enterprisedb.com> wrote:
On 04.08.2012 12:31, Alexander Korotkov wrote:
Hackers,
attached patch is for collecting statistics and selectivity estimation for
ranges.In order to make our estimations accurate for every distribution of
ranges, we would collect 2d-distribution of lower and upper bounds of
range
into some kind of 2d-histogram. However, this patch use some
simplification
and assume distribution of lower bound and distribution of length to be
independent.Sounds reasonable. Another possibility would be to calculate the average
length for each lower-bound bin. So you would e.g know the average length
of values with lower bound between 1-10, and the average length of values
with lower bound between 10-20, and so forth. Within a bin, you would have
to assume that the distribution of the lengths is fixed.
Interesting idea. AFAICS, if we store average length for each lower-bound
bin, we still have to assume some kind of distribution of range length in
order to do estimates. For example, assume that range length have
exponential distribution. Correspondingly, we've following trade off: we
don't have to assume lower bound distribution to be independent from length
distribution, but we have to assume kind of length distribution. Actually,
I don't know what is better.
Ideally, we would have range length histogram for each lower-bound bin, or
upper-bound histogram for each lower-bound bin. But, storing such amount of
data seems too expensive.
------
With best regards,
Alexander Korotkov.
For testing statistics accuracy I've used same datasets as for testing
opclasses performance:
http://archives.postgresql.org/pgsql-hackers/2012-07/msg00414.php
Script for testing and database schema is attached.
Dump with tests results can be downloaded here:
http://test.i-gene.ru/uploads/range_stat_tests.sql.gz
Following table shows statistics of accuracy when actual count of rows is
somewhat large (>=10). Second column shows average ratio of estimate count
of rows to actual count of rows. Third column shows average relative error
of estimation.
range_test=# select operator,
avg(estimate_count::float8/actual_count::float8) as avg_ratio,
avg(exp(abs(ln(estimate_count::float8/actual_count::float8)))) - 1.0 as
avg_error from datasets d join test_results tr on tr.test_id = d.id where
d.stat_target = 100 and actual_count >= 10 group by operator;
operator | avg_ratio | avg_error
----------+------------------+-------------------
<@ | 1.27166784340153 | 0.498570654434906
@> | 1.35965412121763 | 0.384991198200582
&& | 1.08236985243139 | 0.105298599354035
(3 rows)
When result set is small (1-9 rows) then errors are more significant.
range_test=# select operator,
avg(estimate_count::float8/actual_count::float8) as avg_ratio,
avg(exp(abs(ln(estimate_count::float8/actual_count::float8)))) - 1.0 as
avg_error from datasets d join test_results tr on tr.test_id = d.id where
d.stat_target = 100 and actual_count between 1 and 9 group by operator;
operator | avg_ratio | avg_error
----------+------------------+------------------
<@ | 3.51371646596783 | 2.85624536756285
@> | 3.85482923324034 | 2.91433432363562
&& | 3.14281204906205 | 2.28899260461761
(3 rows)
Following table presents average estimate count of rows when actual count
of rows is 0. This value is quite high for && operator, but it comes from
only one tests, so it's not really representative.
range_test=# select operator, avg(estimate_count) as avg_estimate, count(*)
as tests_count from datasets d join test_results tr on tr.test_id =
d.idwhere d.stat_target = 100 and actual_count = 0 group by operator;
operator | avg_estimate | tests_count
----------+---------------------+-------------
<@ | 1.1259887005649718 | 1770
@> | 1.0598670878194025 | 88329
&& | 28.0000000000000000 | 1
(3 rows)
Same tables for statistics target = 1000.
range_test=# select operator,
avg(estimate_count::float8/actual_count::float8) as avg_ratio,
avg(exp(abs(ln(estimate_count::float8/actual_count::float8)))) - 1.0 as
avg_error from datasets d join test_results tr on tr.test_id = d.id where
d.stat_target = 1000 and actual_count >= 10 group by operator;
operator | avg_ratio | avg_error
----------+------------------+--------------------
<@ | 1.17132962269887 | 0.394427785424827
@> | 1.35677772347908 | 0.376171286348914
&& | 1.06762781136499 | 0.0874012522386387
(3 rows)
range_test=# select operator,
avg(estimate_count::float8/actual_count::float8) as avg_ratio,
avg(exp(abs(ln(estimate_count::float8/actual_count::float8)))) - 1.0 as
avg_error from datasets d join test_results tr on tr.test_id = d.id where
d.stat_target = 1000 and actual_count between 1 and 9 group by operator;
operator | avg_ratio | avg_error
----------+------------------+------------------
<@ | 3.30836881177966 | 2.64459517657192
@> | 3.47535917820028 | 2.55199556747496
&& | 2.49181718664477 | 1.49181718664477
(3 rows)
range_test=# select operator, avg(estimate_count) as avg_estimate, count(*)
as tests_count from datasets d join test_results tr on tr.test_id =
d.idwhere d.stat_target = 1000 and actual_count = 0 group by operator;
operator | avg_estimate | tests_count
----------+--------------------+-------------
<@ | 1.1650879566982409 | 739
@> | 1.0511811463771843 | 89447
(2 rows)
My conclusion is so, that current errors are probably ok for selectivity
estimation. But taking into attention that generated datasets ideally fits
assumptions of estimation, there could be room for improvement. Especially,
it's unclear why estimate for "<@" and "@>" have much greater error than
estimate for "&&". Possibly, it's caused by some bugs.
------
With best regards,
Alexander Korotkov.
New revision of patch with two fixes:
1) Check if histogram bin width is zero in get_position.
2) Check statsTuple is valid tuple in rangecontsel.
------
With best regards,
Alexander Korotkov.
Attachments:
On Thu, Aug 9, 2012 at 12:44 AM, Alexander Korotkov <aekorotkov@gmail.com>wrote:
My conclusion is so, that current errors are probably ok for selectivity
estimation. But taking into attention that generated datasets ideally fits
assumptions of estimation, there could be room for improvement. Especially,
it's unclear why estimate for "<@" and "@>" have much greater error than
estimate for "&&". Possibly, it's caused by some bugs.
ITSM, I found reason of inaccuracy. Implementation of linear interpolation
was wrong. Fixed version is attached. Now, need to rerun tests, possible
refactoring and comments rework.
------
With best regards,
Alexander Korotkov.
Attachments:
range_stat-0.4.patch.gzapplication/x-gzip; name=range_stat-0.4.patch.gzDownload
� �(P �}�[������Wl�slcH�I�-!$�=r�����y������+�zo��w>�K��6�9�9
M��V���3����Q8�v�2�E�����A0�$���,�l3��o�OrFR4X������d$E��}����#�Yw���N���5�>�������=�����������w.�D0�:��4���a���3�B�Q������V�X���0G��-~�r����Lo���0�A<�:W�5|����A*o�0��}M���}�Z�$��Q�Q��A�����?�#�<����vr���y�(���O��������'A>���I�x���w%� ��2������8�n��q��f�%�7Z,D8<_��n�y�4���;��t�[[���h�0���B��P]�U�Z4����~rpqtz��?{s���{[[O[����&hwvx����tr�h���l��gp�W�9��.�O������"�M�I���M���� ��<Lb1NR�D1
����G^�l��3�l������u�-��k��_!�'2�[��,��t�d�#1J�������I4��YG�������`
�$�"N� ��&���Y���K���s���F�-|z������p$S(�f�@���� 6��*�p�0�E���}@_P$%'�4M� �U�b�9�Gq� ��2����� i����p-��%��z��8�C�A�o`���e �KY�;�p3��^��7�A�I��6�?M2p�&��Xo����'�'G��BO�9����G�X��IP�XFb���Dfl����'��Z�r��>Qc�SI(�����*��sq�i(���
�~������`3;"gjf�����E�O��+��L���������l�����X���������, ` &������ �4�� �f�)�����`]KC��RQ�,�:!���b����/A`PB��0��q:v4����� �����U.�����>nou{[-h����<��c�&Q��+y-�d�L�I��t���8���<C�P����k�fH?�rD!�1�2zG�O.�^�������WX�/�m��o�x�@���L��s���[�a��:W/J�����D������/"����m43�i�M�a�Ml5 ���0
@#g�L��,�`��e��0^I�mg=��7��:��,���8�U� m�t�0�]������d��xu�z���E����b���~x,��nw���x�~��?�����{s�#�K�xP ��-�`8n���saoO�������94����MW|���G�&cK4��{6��dD��pT�A�qs|�su���X�S�����
��� �@�_)P-�����A���� ����'�7�`��rog��/Iu�TR�-��`1����df �(��Y�2*�
=�^W/=�+@��M�!G����`+6�����z��0���`���(���t��?�������cw��+���3%�� ��( �����auq}���#�U�f��[4��x(�������_���9i��5I��/m1v���M��^���-����u������X�C�%`�.
�X�G�8�i��bO4
�~sx�����W|x���V`�`�f��sZ�z��q�c �
:<Az�!x�����Y^��)g2�p��W���U�K1�<7��M���K�$�nGr���s��Dm�Z7�j�Vh���_Z~���e8]!���q���gt"�+�4�h�0_����[7[h����Oe>Kc��Gj�W������D��h|�l��M_�l���R�%4A�D}`$�Q�EW�B�&5�.�������
�]��� �0��A|�c�q<�D�����"\`����!bS�Q��Px`[F�xy���.[d
5<���e���x. ��zI<��@I���T��t��������7�my��
���l����,�E�o:��5���x ��8S�a����V��M%WS��<Pjc���|�
�����$7Ye�-�!�
�k\�UY��`�2��:�����c��(�b!\z` ��n���'�N�C`\�w�`��C`���D���v��Q�X��CK~"O�@����C� h��` ?86���*H,��8�
���s�wQ�8��&#S��6
'��a��B|A7Q M���c��j.��4����K�< �/���l�����H�w�b�t��Zg�T���JR_l��!,o�r_JVh%��6�]���,�����1R�p�Q� -��g�^*p�B��F��o�������yt|t��u`�W�B�
����~-�+��F��9��X������`����1�m��I:��^����\��
b�&lD0�++��5�:���+�1Q�&q�Ac��E���TA�)�8:�8{p������ �9���
�d:��2.�����c4m8��a� ��� <���J4���TRn�����w�
����=OQHr,Fg���D�&�i0Q1��Z�++�#�HA�
��$��^�*��!{�@R�#�}��9vA��Ge����t�������N��m\�5���4,4�"x� XV�w5�$�u����J����i0��.�i�������vZ�����cZ)C"N��q����x���9�1����8ZJ��<��(��*��*<�e�S����"���NAu��
�7>�)����f�K�$�8����Q-R�je4���0R�>��7A~��gqFOg��&5+8)c��U�����*p`xQ��&VJ�y��3 ��.=�B�}�N�j ��F��U48�v��!tR����`J9���6{��������M�t�yF`vI�N���$�"��]��k0����8f7FE�-6���5���b��>����u�h���>�XTC��"��B &�mFi1^a#�H�n�G����;�u��@z�v?&�F��^�U����@�<��8-��\�JbU'��W`�d�93�{�.)K���
���?���%��=���������
��S�{���K�&J���r�j�V#;K ���o�Jb��0��T��=��U���(4�����EuM�%
6C:"#��1�`��c0.�c����"G������mP#
`:� '<�&'���5��<�
����8�zpc�F��T��pB:�:����h__P�=�s��EI�k�dt�0��)t�[�+�dTx��b�����������W���������-q�� G�a���.<(d��$������B�VSw���^��hz|x����{����{�a�{� �����,p{I�P��S2Sp2�^m��SX��a#�����Tvu!��� t�O�$AH_E�� �"��p��*�Bz�U+/�tUN���YYxI�L�zT:ki�72'����
?4]Z?����������B=����s�!}��(ELkt=�� ����<�i�
`�-�t�c������k,���v2��*@��-���������}���M������ �������RN1P5�0?�B�+)i���b���`\K�����E�D/��m�>���U����c{2�LO[����������0��/�x�a�QvA���5G�hP0��M8���F�����j
�*�4LDh�q�C��
*T�<���an� ( �`�����tZ��#����A�Q.��e���Tp������cp^)��D��.���AE
�o�������4���>�cJA����bcS�Wm�f��{�G�����x�D������]�[��t�i
9u7�1E�����f�s�H�EJ���;`(�� �,�����RME�8^�U�g�90���4i�
>7���0I�B�0v��LE_W�mI��K����XG-*RJ�����x8;�c9�+�T�� . ���QP�1��RD�,�%����nuG)j_�Y7���qC�Z����4`d��v��
��KD�K>-S�_���[`�X��"�[q#1�t�Cgs����$����ZA���J�7��)q�h�s��f�n�()SMi&O�B�p���zDU 4��,
��B� ���.�\��P�3�g@��e����:�m�&�7]=��kY��s�����6�t�����o��Jsk�1�������R��\���>��Z@o�`[�O�G��W����x��� |iNY�6]41���LSy��{�V���cT�+�I�������Yn5E��j]T�/��]���)�El��t\��p20��{�B� ieVr[��bG��0���m}�v)�*�L��2��N�Y
��UKz='Z
��\S��(�����"��J�yP, 9 "
������Q"3��T$���1,4����5���)]z���Q�v$�LS���q\y���u[�>b��Nd?�0����m�@ .�cAh+f��(7E�O0@�� ^u�\e��,?_��W�����d,����.����2)�@#0�I+��J�V�4^N�0��S`Bt\�Id��U���U��d&��ru��.G� �^{^��f��&{�`@�������R��R�C��mc����f������Q^`��qA���T�9n���`�G���Xbng���F.!E�������>4[�(?O�.��h.�!!�@�J&�a]�*�
�sM��*�R�Q��ve�pA�\e���'���~]������������������/Q����=wF����!�r?V�q��of_3&�m!����V�.��5��
��c-T0y�,0��D�B�:�b�
(6�4oefew��u��a]�Wuq��(d�I��m@A��T��@@�$�&�(���p2��+��2�"C�:�R���j�����+FT��7����+w��}�'�e���t�`����D��R�q��<A��&�( �(c��*���~O��G�5��$�"�<�� ����!)`�������,��heZP��r�U1q-�]�*���l���nI�F�D�������k�!�o��D��u!��SN3�J���7U J��xN���|]�v�(�F��\��2+�z�Od'���V{&�f\6����'[��^�[���e��� ��N�5��t1�M��|[B��#8~ !
�� �Q��<kN��6O|~��]����T���}�2~��\����:�]Y��f�|��Q1ll���!>Ed�n��G58���GX�}�!���;�:C�����5~���a��A�DJ�/
�ON+�����~W*,��g����W��c�w]�
?�o����8��H� ��t�Ee=���r�/AJ��C��������R�>���
M�HM���"�_��1�`�%�O��aQ�� �L|*m���c��]$���K���D�LJ���� Qa��E&���v�^��[���B�3,B��M�J�V�
:�1���/�����
hA������5�����8����t�*��W<�8�8�M
`5�V���z���g����b ���x%c�%���x���#|���a���Yp�"�_Jj�q~����[�F�;���e��Q�����0���d%�]�����r�����u���g1��
������_J��au�����N�I����&��)[���f�����ZI��V�K'��7�}�s6����O�0�]/l��d��pJ�����yk��q�#u�v��3�Z���Z��l&�O��;�����/z�O��T)��-��ySiK%�~���]�*��U�]�tx��
��H'1G[#CU��7����6��. `T���_i�P^��8%U����f��&���+��p����0���`a�_��_��������_8?�g��8A5;���6;�Q��f�������?6;��c�n�
V]�K�X7{as�w�YXA+2��`�+'9�����W}Zp��]�K}�..�]t���@vq����.V]�/�]�����,�cT��p��9���Y�1Z��Li��G�1G��H���dd1=Y��4�#k��d��*��}\��+����\.N[�_�m�OCY��L��W#kP7������y���c�+�9��K
dN�x6���wL�������������:9k��J?ah�fQ�u ���m�Ix��� ��Y� Z ����+j�.��]���F�����h06��^:�M(/��Y����+�Y�K���h}����+9��O������������]urw,�u(*nQ�U�z�c"���$7�P,N�*�/���}zs�������y�����'m{6uI�9Ix��WJ�����#�!�!]b�Rb�6��z��.�������s
�����;)�T
�r��p�;>����V_>a+�c��U�&N[n�����h�
M6-Z���Q�,�?��5���Mc�;���Zr���6A����5C���e}Z\Y �0p��-,\��0�a;����m��NXr)�[���C��w�p=[�T��(H���VGX���e�GI/l���(�B��'�����p�����N{�y5���M�l���im�%S��8�"{��_��P�
��/G%.���s��C)��L��!�o�D�����*(���E��J�M�9�~���BY>y��V���X����Vx��cBT�L2U'���dj�zw����1�������R���.dN��g�&�L�'z^fq�����������%�~�w�w� ������l��f���������������Zy��A�������C�mR���=��Vn��O�^o_��~��Y���v�������}*������DQ�v���`3K���`� ���c��Q��g�q��";�
���j,o��������u����W���t:���h��xu}}������ �+6����+�#�����na��N7�����*F�W�a4^���n�6�����3I���s��3��'3�He:��f�g%�ToZ �&���%��-�K�k]��m1�p2T +B�[�v���=3*����Za��B���Dv� ��a�p��B1Y8�F�]���C<������0l[������o���q�Uu�"�qs.d[�9
����A��a�7
^0Q�����d����8O�<���V��<���S �I'�2O������O�KRf��dz���6�M���}�����Z�"��=��c�&J������)Y�o�d6]j�%�$�fy��6��w6�,X�!�<�2zG�O.�^����Z���#��W�Q�K��@�M�JY�j����"�l3�M�[�r� �!��������9mL���$�L�i���`8�M���P�Y������������5C��}~��@��&��xN�,�� M��>��Y|w1B�1�<�WH+�&j: 0Qz��d*�������Pqq��Jj�9��h*P��}?�����EuM����J��pD��m����������I$y�n�?�F�D�P#���!bB(`�G��(���k���1~B�r�6@��4��Z*����W�C�i�+���C�73[V��������
���7���OPR��go�M��3>t���}�����y���X/N��F1����Z�{@�{j��lc� @�J���0uJ�����g4�,��;��#��7�m�7�2d
.��k�3�K�Ld�0�����Aun���r'>�CP�:�����#����Rt�����2�"��k ��M{�84'�"�&�B�����;x�|�;P�8-T^w+�>
G�D�9oO���>��������S~�� ���+8���O��e9���Te�J�f�I� �/�Q�"��cY�h��
�Q5m�q�ne+�����J��|rO}#���F�Pr"Mi����zz������������s��T�I$�z<qT�l��ZEWu�����O�u��*rW�s�B�Pz����`%F:����A5�a�������{�
�����%���Y |Y!�>6'�@cs����]l���oyo���(� U<Gp�c����i�jo���kZ�W{�Z�V�&.����?�U�LV�|[�HXd��x�B#a���Z����3����)KP���_s��'�%<E��>�N�G�s����� �e���*,�����ivZd=.�V�������'<H9 3kh���Y�(�G�>�2�Y~���-�$U�|@����W�!;D��&vU0>����d��i�� 1gB6PP,:����:���X������8�1Y]N,��KjUg���]n}��H���$0�T��kj�bS��)7���k����;#qW�c�ZS��N�'w^�����>��|{����'��|G
��2�P������S�A �N��:m]']`��?��&�h��s��{v�������F�9UK]X-F`�{hhl�!�����V�k�I�+������j��f�M���d���8K)�����������}����Es*FUE��4������*�Z�C/�)f���`��b���q7������4��>�����0w������w�8����0�����"�lG+��d1���)�eNV��t�B�&